If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5^2+b^2=8^2
We move all terms to the left:
5^2+b^2-(8^2)=0
We add all the numbers together, and all the variables
b^2-39=0
a = 1; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·1·(-39)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{39}}{2*1}=\frac{0-2\sqrt{39}}{2} =-\frac{2\sqrt{39}}{2} =-\sqrt{39} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{39}}{2*1}=\frac{0+2\sqrt{39}}{2} =\frac{2\sqrt{39}}{2} =\sqrt{39} $
| 6-5x+9+4x+2x-3=4+3*4 | | (10x-3)°+77=180 | | -4(3n-3)=-6(3n+2) | | 6(x-1/3)=-2(×+23) | | 9x-24=x | | 1=m-984/10 | | x+8.63=11.001. | | 10x-5+98+82+85=360 | | 26=2w-10 | | 4x=1000-x | | -3+7x+5x+8+4x+19+160=360 | | 3(v-695)=420 | | 5x+3/2=24 | | m=3/8=5/8 | | 3/4-7x=209 | | -4y-8=79y | | .75-7x=209 | | 3x-19+58+61+164=360 | | 6x+1=-3x+3 | | 4x(8-3)=(4x | | 5x+3(x-7)=4x+3 | | 110+111+10x+69=360 | | Y-(5y-2)=10 | | 8c+6+5c=-21 | | 6x+1=3x-3 | | 7(6-4n)=-7(3n+6) | | 14+5=c | | 850=x+3x | | X^2+(x+3)=225 | | 6(6n-2)=12n-8 | | 14x-5+91+54+10x+4=360 | | 3x=850-x |